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Abstract
Role-based access control and role hierarchies have

been the subject of considerable research in recent years.
In this paper, we consider three useful applications of a
new role-based access control model that contains a novel
approach to permissions and permission inheritance: one
is to illustrate that the new model provides a simpler and
more natural way to implement BLP model using role-
based techniques; a second application is to make it pos-
sible to define separation of duty constraints on two roles
that have a common senior role and for a user to be as-
signed to or activate the senior role; finally, we describe
how a single hierarchy in new model supports the require-
ment of distinction between role activation and permission
usage hierarchies. In short, the oriented permission model
provides ways of implementing a number of useful features
that have previously required ad hoc and inelegant solu-
tions.

1 Introduction
Role-based access control (RBAC) has been the subject

of considerable research in the last decade [5, 8, 12, 18]
and is widely accepted as an alternative to traditional dis-
cretionary and mandatory access controls. Some important
characteristics of RBAC that have led to its deployment
in commercial computer systems and applications include
policy neutrality, support for the principle of least privilege
and ease of management.

A new role-based access control model [5] adopts a sim-
ilar approach to RBAC96 [18] with respect to the role hi-
erarchy and the user-role assignment relation, but proposes
a new approach to permissions and permission inheritance
within the role hierarchy. In this model, each permission is
oriented and can be inherited in one of three ways within
the hierarchy: by more senior roles, by less senior roles
and by no other roles. Consequently, this model provides
more flexibility than standard role-based models. Hereafter
we refer to this model as OP-RBAC (Oriented Permission
RBAC).

In this paper, we investigate various applications of OP-
RBAC. Since the introduction of RBAC, several authors
have discussed the relationship between RBAC and the

Bell-LaPadula model (BLP) [13, 14, 15, 16]. Osborn et
al [15] show that information flow policies in a number of
different versions of BLP can be implemented in RBAC
by the addition of a second role hierarchy and some con-
straints on the RBAC relations. However, these approaches
are somewhat artificial and limited. The model for permis-
sion inheritance in OP-RBAC provides an alternative way
of implementing BLP within the context of RBAC. We be-
lieve that this new approach is simpler, more natural, and
more effective than existing work in this area.

Separation of duty has always been an important con-
sideration in RBAC models. However, the standard RBAC
model is not without its problems in this area. It is impossi-
ble for a user to be assigned to or activate a common senior
role to two roles which are mutually exclusive in the role
hierarchy. We will show how to use OP-RBAC to imple-
ment separation of duty constraints on two roles that have
a common senior role and for a user to be assigned to or
activate the senior role.

It has been shown that there are situations where it is
useful to distinguish between role activation and permis-
sion usage inheritance [17]. Such a distinction has been
made in both the ERBAC96 model [17] and the GTRBAC
model [10], by introducing distinct role hierarchies. The fi-
nal contribution of this paper is to prove that an instance of
the ERBAC96 model can be transformed into an instance
of the OP-RBAC model, which requires a single role hier-
archy.

The rest of the paper is organized as follows. In the
next section, we briefly review RBAC96, and formally
present OP-RBAC and inter-relationships among the dif-
ferent components of the model. In Section 3, we consider
three useful applications of OP-RBAC: one is to show how
OP-RBAC can be used to implement BLP model with ad-
dition of a few constraints to the basic model. An sec-
ond application is to illustrate that separation of duty re-
quirements can be defined and enforced in a hierarchical
RBAC model; the final one is to demonstrate how to im-
plement the ERBAC96 model using OP-RBAC. We also
discuss related work in these areas and compare them to
our approaches. Section 4 concludes the paper with some
suggestions for future work.
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2 Background
In this section, we begin by providing an overview of

RBAC96, and then go on formally define OP-RBAC.
2.1 RBAC96

We briefly summarize the RBAC96 model, on which
OP-RBAC is based. We assume the existence of the fol-
lowing sets and relations:

• A partially ordered set of roles RH ⊆ R×R. We will
write r 6 r′ to denote that (r, r′) ∈ RH and r > r′

to denote that (r′, r) ∈ RH . We write ↑r to denote
the set {r′ ∈ R : r 6 r′} and ↓r to denote the set
{r′ ∈ R : r′ 6 r}.

• A user-role assignment relation UA ⊆ U ×R.

If (u, r) ∈ UA then we say u is explicitly assigned
to the role r. We denote the set of roles explicitly
assigned to u by R(u) = {r ∈ R : (u, r) ∈ UA}
and all roles (explicitly and implicitly) assigned to u
by ↓R(u) = {r′ ∈ R : ∃r ∈ R(u), r′ 6 r}.

• A set of sessions S.

A user u activates a session S(u) by selecting a subset
of the roles to which u is assigned; that is S(u) ⊆
↓R(u).

• A set of permissions P .

• A permission-role assignment relation PA ⊆ P ×R.

If (p, r) ∈ PA then we say the permission p is explic-
itly assigned to the role r. We denote the set of roles
to which p is explicitly assigned by R(p) = {r ∈ R :
(p, r) ∈ PA} and the set of roles authorized for p by
↑R(p) = {r′ ∈ R : ∃r ∈ R(p), r 6 r′}.

• A request by a user u for permission p is granted if u
has activated one of p’s authorized roles, that is S(u)∩
↑R(p) 6= ∅.

2.2 OP-RBAC
OP-RBAC is almost identical to RBAC96, but intro-

duces a different approach to permission inheritance. As
we shall see, this approach provides considerable more
flexibility than standard role-based models. Formally, the
model has the following characteristic features.

• A set of permissions P .

Each permission is “oriented” with respect to inher-
itance and can be either “up”, “down” or “neutral”.
That is, P is the disjoint union of P+, P− and P 0,
where P+ is the set of up permissions, P− is the set
of down permissions and P 0 is the set of neutral per-
missions.

We denote the set of roles explicitly assigned to p by
R(p) and the set of roles authorized for p by the func-
tion RE : P → 2R, where

RE(p) =





↑R(p), if p ∈ P+,

↓R(p), if p ∈ P−,

R(p), if p ∈ P 0.

where ↑R(p) = {s ∈ R : ∃r ∈ R(p), r 6 s} and
↓R(p) = {s ∈ R : ∃r ∈ R(p), r > s}. We say that
RE(p) is the (set of) effective roles for p.

• A request by user u to invoke permission p is only
granted if u has activated one of p’s effective roles,
that is S(u) ∩RE(p) 6= ∅.

This is obviously a generalization of the condition
used in RBAC96, which treats all permissions as up
permissions, and hence RE(p) = ↑R(p) for all p.

3 Applications of OP-RBAC
In this section, we demonstrate how, with the addition

of a few constraints, OP-RBAC can be used to implement
the BLP model. We also show how OP-RBAC can be used
to remove some of the problems associated with the inte-
gration of role hierarchies and separation of duty require-
ments. We also investigate how to incorporate role acti-
vation and permission inheritance in a single OP-RBAC
hierarchy. Finally, we give a comparison of our work with
related work in the literature.
3.1 Implementing BLP using OP-RBAC

BLP [3] is probably the most widely known security
model and implements an information flow policy de-
signed to preserve the confidentiality of information. The
key features of BLP are the partially ordered set of security
labels L, the set of security functions Λ, the simple secu-
rity property πss, the *-property π∗ and the discretionary
security property πds. Each subject (user) and object is
associated with a security label which is determined by se-
curity function λ(s) and λ(o). πss requires that a subject
s is authorized to read an object o if λ(s) > λ(o). π∗

introduces a current security label λc(s), which enables
a privileged user to downgrade his security level (where
λc(s) 6 λ(s)), thereby allowing him to append to less
privileged objects (provided λc(s) 6 λ(o)). As a conse-
quence of πss and π∗, a subject s is authorized to write
an object o if λ(s) = λc(s) = λ(o). πds requires that all
requests are also authorized by an appropriate entry in the
protection matrix M .

In OP-RBAC, we interpret the user’s security label in
terms of his explicit user-role assignment(s) in the UA re-
lation, and the user’s current security label in terms of the
roles he has chosen to activate in a session. In other words,
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the user’s security label is system-defined and the current
security label is user-defined. This corresponds closely to
λ(s) and λc(s) in BLP. Additionally, due to the uniqueness
of security labels of subjects, we require that each user is
assigned to a unique role, and can only run one session at a
time and activate a single role. Formally, R(u) = {r}, and
S(u) = {r′} for some r′ 6 r.

However, we can not regard the set of roles explicitly as-
signed to a permission, R(p), as the security label of a per-
mission, because permission usage in RBAC model is in-
compatible with BLP. In RBAC models, permission usage
is based on an existential criterion; a user u can use permis-
sion p if there exist roles r and r′ such that (u, r) ∈ UA,
(p, r′) ∈ PA and r′ 6 r. In BLP, permission usage is
based on a universal criterion; a user u can use permission
p if the security label of u, R(u), dominates R(p), the set
of roles explicitly assigned to the permission. The incom-
patibility can be resolved by assigning each permission p
to a unique role r. That is R(p) = {r} for some r ∈ R (as
is assumed in existing approaches). Moreover, we require
that all permissions for a particular object be assigned to a
unique role r, thereby regarding role r as the security label
of the object.

In order to satisfy πss and π∗, we must set some
constrains for permissions and access requests checking
in OP-RBAC. We require that if p = (o, read) then
p ∈ P+; if p = (o, append) then p ∈ P−; if
p = (o, write) then p ∈ P 0. We allow a read re-
quest if R(u) ∩ RE(p) 6= ∅; An append request is al-
lowed if S(u) ∩ RE(p) 6= ∅; A write request is al-
lowed if R(u) = S(u) ∩ RE(p) 6= ∅. For example,
given ((o, read), r), ((o, append), r), ((o, write), r) ∈
PA, any user u who is assigned to a role r′ ∈ ↑r is able
to read the object o, and any user u who has activated a
role r′ ∈ ↓r is able to append the object o. However,
only the user u who is assigned to r and has activated r is
able to write the object o.

Furthermore, it is at least possible to implement some
coarse-grained discretionary properties using OP-RBAC.
Suppose that we do not wish users with security label r to
be able to append to objects with security label r′ > r.
We insist that (o, append) is a down permission. Instead
the administrator can define this permission to be a neutral
permission, so that only users with security label r′ can
append to o. Of course, the administrator can also assign
this neutral permission to other roles r′′ 6 r′ if desired.
In other words, making certain permissions neutral rather
than up or down, gives limited support for policies defined
at the administrator’s discretion.

3.2 Separation of duty
Separation of duty is a widely recognized business prin-

ciple that is used to prevent conflict of interests arising or

to prevent fraudulent actions. At its simplest, it requires
that if a sensitive task is comprised of two steps, then the
same user can not perform both steps. Separation of duty
in role-based systems has attracted considerable research
interest in the literature [1, 4, 6, 11, 19].

If p and q are mutually exclusive permissions, the stan-
dard RBAC approach is to assign p and q to two different
incomparable roles r1 and r2. Static separation of duty
requires that no user can be assigned to both r1 and r2,
whereas dynamic separation of duty requires that no user
can activate both r1 and r2 in the same session. In standard
hierarchical role-based systems, static separation of duty
requires either that RE(p)∩RE(q) = ↑R(p)∩↑R(q) = ∅,
or for all roles r ∈ ↑R(p) ∩ ↑R(q), no user is assigned to
or allowed to activate r. In the simplest case when p and
q are assigned to different incomparable roles r1 and r2,
either that r1 and r2 have no common senior role or that no
user can be assigned to or activate any common senior role
r. Unfortunately, this condition will usually completely re-
move the advantage that role hierarchies provide in reduc-
ing administration of the access control system. In short,
separation of duty and role hierarchies are effectively mu-
tually exclusive features of standard RBAC.

As in the standard RBAC approach, if p and q are mu-
tually exclusive permissions and we want to ensure static
separation of duty, we require in OP-RBAC that RE(p) ∩
RE(q) = ∅ and for all u ∈ U , R(u) ∩ RE(p) = ∅ or
R(u)∩RE(q) = ∅. Figure 1 illustrates the four ways of en-
suring that for mutually exclusive permissions p and q as-
signed to roles r1 and r2 respectively, RE(p)∩RE(q) = ∅.
(The roles enclosed by a curve illustrate the effective set of
roles for each permission.) The most direct way is to make
p and q neutral permissions and assign them to roles r1

and r2 respectively, as show in Figure 1(a). Therefore, u
can be assigned to more senior role r without acquiring the
mutually exclusive permissions p and q. In addition, Fig-
ures 1(b)–1(d) shows that it is possible for u to be assigned
to senior roles r or r′ by defining p and q to be other types
of permissions.

Note that the relationship between static separation of
duty and dynamic separation of duty is different in OP-
RBAC compared to standard RBAC. In standard RBAC,
a user u is authorized for the set of permissions, P (u) =
{p ∈ P : ∃r, r′ ∈ R, (u, r) ∈ UA, (p, r′) ∈ PA, r > r′},
and the set of permissions available to u is a session is
monotonic with respect to the role hierarchy. In other
words, if r 6 r′, it is always the case that the set of permis-
sions available in a session in which r has been activated
are a subset of those available in a session in which r′ has
been activated. Since the permissions available in a session
are always a subset of those for which a user is authorized,
we have that the enforcement of static separation of duty
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(d) p ∈ P+, q ∈ P−

Figure 1: Implementing separation of duty using different types of permissions

implies the enforcement of dynamic separation of duty.
However, in OP-RBAC, the permissions available in a

session are not monotonic with respect to the roles that
have been activated. In other words, although we may have
r 6 r′, it may not be the case that the set of permissions
available in a session in which r has been activated are
a subset of those available in a session in which r′ has
been activated. This is because permissions are oriented.
In other words, if static separation of duty is enforced in
OP-RBAC, it does not imply that dynamic separation of
duty is satisfied in OP-RBAC. However, if we want to en-
sure dynamic separation of duty in OP-RBAC, we only re-
quire that for all u ∈ U , either S(u) ∩ RE(p) = ∅ or
S(u) ∩RE(q) = ∅ and RE(p) ∩RE(q) = ∅.
3.3 Usage and activation hierarchies

In most RBAC models, the role hierarchy serves two
distinct purposes. A role is assumed to inherit the permis-
sions assigned to roles below it in the hierarchy; this is
called the (permission) usage aspect of role hierarchy. In
addition, a user assigned to a particular role can also ac-
tivate any subordinate roles in the hierarchy; this is called
the activation aspect of role hierarchy.

Sandhu showed that making this distinction between us-
age and activation hierarchies has a number of useful ap-
plications [17]. In particular, it provides an alternative way
of solving the incompatibility between static separation of
duty constraints and the role hierarchy in RBAC96.

The ERBAC96 model (extended RBAC96) has a sep-
arate activation hierarchy, which extends the usage hier-
archy of RBAC96 [17]. Formally, we have an usage hi-
erarchy RH u and an activation hierarchy RH a, where
RH u ⊆ RH a. In other words, r 6u r′ implies that
r 6a r′. A user’s interaction with the system is mod-
elled by a session, where a user u activates a set of roles
S(u) ⊆ ↓aR(u). The set of permissions for which u
is authorized u in a session S(u) is denoted by P (s) =⋃

r∈S(u){y ∈ P : ∃r′ 6u r, (y, r′) ∈ PA}.1

1GTRBAC [10] defines three different hierarchy types: permission-
inheritance only hierarchy (I-hierarchy), activation only hierarchy (A-

Figure 2 on page 5 shows an example of an activation
hierarchy and two different usage hierarchies, which will
be used to demonstrate how to define the dynamic sepa-
ration of duty requirement that a common senior role r1

of two mutually exclusive roles r2 and r3 can be activated
in ERBAC96. A user u, who is assigned to role r1, is al-
lowed to activate any junior roles in the activation hierar-
chy shown in Figure 2(a). However, if u activates role r1,
u can not acquire permissions assigned to roles r2 and r3,
because there is no inheritance relation between roles r1

and r2 in the permission usage hierarchies shown in Fig-
ure 2(b) and 2(c).

We can implement this distinction between role acti-
vation and permission usage in OP-RBAC using only a
single role hierarchy, up permissions and neutral permis-
sions. Up permissions are inherited by more senior roles
and neutral permissions are inherited by no other roles
in the role hierarchy. The type of permissions is deter-
mined by the usage hierarchy, and the new permission
assignment relation is determined by the usage hierarchy
and the permission type. We can transform an ERBAC96
system (UA,PA,RH u,RH a, P ) into a OP-RBAC system
(UA,PA′,RH a, P ′) using the following procedure:

1. Let P+ denote the set of up permissions and P 0 de-
note the set of neutral permissions;

2. Let PA+ denote the permission-role assignments for
up permissions and PA0 denote the permission-role
assignments for neutral permissions;

3. For all r ∈ R such that ↑ar 6= ↑ur, and for all p ∈ P
such that (p, r) ∈ PA, we define p ∈ P 0, (p, r) ∈
PA0, and for all r′ ∈ ↑ur, (p, r′) ∈ PA0;

4. For all r ∈ R such that ↑ar = ↑ur, and for all p ∈ P
such that (p, r) ∈ PA, we define p ∈ P+, (p, r) ∈
PA+;

hierarchy) and inheritance-activation hierarchy (IA-hierarchy).
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Figure 2: Activation and usage hierarchies

r1 p1

r2 p2

r3 p2

r3 p3

r4 p4

(a) PA in ERBAC96

r1 p1 +
r2 p2 0
r2 p4 0
r3 p2 0
r3 p3 0
r3 p4 0
r4 p4 0

(b) PA′ in OP-RBAC for Fig. 2(b)

r1 p1 +
r1 p2 0
r2 p2 0
r3 p2 0
r3 p3 +
r4 p4 +

(c) PA′ in OP-RBAC for Fig. 2(c)

Figure 3: Transforming the ERBAC96 permission set and PA relation

5. For all p ∈ P such that (p, r) ∈ PA0 and (p, r′) ∈
PA+, we define p ∈ P 0, and for all r′′ ∈ ↑ur′,
(p, r′′) ∈ PA0, and remove (p, r′) from PA+;

6. Define P ′ = P+ ∪ P 0 and PA′ = PA+ ∪ PA0.

We now show how the transformation works by taking
the example of the ERBAC96 system illustrated in Figure 2
and the permission-role assignment relation in Figure 3(a).
Firstly, we consider the example of usage hierarchy in Fig-
ure 2(b). Let us assume that the first role examined by
the transformation procedure is role r4. The first stage is
to compute all roles which are senior to r4 in the activa-
tion hierarchy, that is {r1, r2, r3, r4} and all roles which
are senior to r4 in the usage hierarchy, that is {r2, r3, r4} .
Hence we find that ↑ar4 6= ↑ur4; using Step 3 we define all
permissions (only p4 in our example) assigned to r4 to be
neutral permissions and assign all such permissions to r2

and r3. We continue to compute other roles (r2, r3, r1). Fi-
nally, we output the set of neutral permissions {p2, p3, p4},
the set of up permissions {p1} and the new permission-role
assignment relation PA′ shown in Figure 3(b).

For the second usage hierarchy in Figure 2(c), we firstly
take the role r4, for example, to be examined by the trans-
formation procedure. We find that ↑ar4 = ↑ur4 and define
p4 assigned to r4 to be an up permission (Step 4). After
computing all roles (r1, r2, r3, r4), we find that (p2, r2) ∈

PA0 and (p2, r3) ∈ PA+ (Step 5). Hence, we add
(p2, r3) and (p2, r1) to PA0 and delete (p2, r3) from PA+

(Step 5). Finally, the new permission role assignment rela-
tion PA′ is generated as shown in Figure 3(c).

We now prove that the transformed OP-RBAC system
is equivalent to the ERBAC96 system, in the sense that
it returns the same answer as the original system for all
possible access requests.

Theorem 1 Let Σ = (UA,PA,RH a,RH u, P ) define an
ERBAC96 system and Σ′ = (UA, PA′, RHa, P ′) define a
OP-RBAC system derived from the ERBAC96 system in the
manner described above. Then for all p ∈ P , RE(p) in Σ
is equal to RE(p) in Σ′.

Proof For convenience we write R′E(p) to denote RE(p)
in Σ′.

We first prove that RE(p) ⊆ R′E(p). Let r ∈ RE(p):
then there exists r′ such that (p, r′) ∈ PA and r >u r′.
There are two cases to consider. If ↑ar′ 6= ↑ur′, then by
Step 3, (p, r) ∈ PA0 and r ∈ R′E(p). If ↑ar′ = ↑ur′, then
by Step 4, (p, r′) ∈ PA+. Since r >u r′, by definition
of ERBAC96, r >a r′. Hence r ∈ R′E(p). (Note that
if (p, r′) ∈ PA0 and (p, r′) ∈ PA+, then we add (p, r)
to PA0, using Step 5, and hence r ∈ R′E(p).) Therefore,
RE(p) ⊆ R′E(p).
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We now prove that R′E(p) ⊆ RE(p). Let r ∈ R′E(p):
then there are two cases to consider. If p ∈ P 0 and (p, r) ∈
PA0, then there exists r′ 6u r and (p, r′) ∈ PA (by
Steps 3 and 5). By definition, r ∈ RE(p). Alternatively,
if p ∈ P+, then there exists r >a r′ and (p, r′) ∈ PA+.
By Step 4 r >u r′ and (p, r′) ∈ PA. Again, by definition,
r ∈ RE(p). Therefore R′E(p) ⊆ RE(p). The result now
follows. ¥

Corollary 2 User u is authorized for p in Σ if and only if
u is authorized for p in Σ′.

Proof For any session s that user u can create in Σ, u
can create exactly the same session in Σ′, because the ac-
tivation hierarchy RHa is used in Σ′. u is authorized for
p in session s, if and only if there exists r ∈ s such that
r ∈ RE(p). By Theorem 1, r ∈ RE(p) if and only if
r ∈ R′E(p). ¥

In summary, permission usage requirements in the sys-
tem determine how to assign different types of permissions
to roles in OP-RBAC. In certain situations, neutral permis-
sions must be assigned to several hierarchical roles, which
somewhat adds to the complexity of permission adminis-
tration. On the other hand, the approach adopted in OP-
RBAC offers simplicity by using a single role hierarchy.
We might expect that it would be easier to administer an
OP-RBAC system rather than an ERBAC96 one, for ex-
ample. This would be an interesting direction for future
work. In addition, we defined a transformation procedure
that is for transforming an ERBAC96 system into a OP-
RBAC system.
3.4 Related Work

There have been several attempts to implement BLP
models using role-based models [13, 14, 15, 16]. Osborn et
al’s approach [13, 14, 15] shows how the role-graph model
can be configured to enforce information flow policies. In
their approach the lattice of security label is defined sepa-
rately and independently from the role graph. Each subject
and object is assigned a security label as in BLP. Then the
r-level of a role r, denoted by r-level(r), is defined to be
the least upper bound of the security labels of the objects
for which (o, read) is in the permissions of the role r; and
the a-level of a role r, denoted by a-level(r), is the greatest
lower bound of the security labels of the objects for which
(o, append) is in the permissions of the role r. For all
(u, r) ∈ UA, the security level of a user u must be greater
than or equal to the r-level of r, and for all (u, r) ∈ UA,
the security level of a user u must be less than or equal
to the a-level of r. We think their approach for simulating
the basic information flow policy using role-based access
control is complicated, because their approach needs to in-
troduce an extra lattice structure to determine the security

labels of users and objects, and requires modification to the
role-graph algorithms to compute the r-level and a-level of
each role in the role graph model.

An alternative approach was developed by Sandhu et
al [15, 16]. This involved defining two hierarchies, one
for read roles and one for append roles. The append hier-
archy is the dual of the read hierarchy: that is, x 6 y in
the append hierarchy if and only if x > y in the read hi-
erarchy. A number of constraints, similar to a number of
ours were also defined. Each pair of permission (o, read)
and (o, append) is assigned to exactly one matching pair
of xr and xa roles in RHr and RHa respectively. Thereby,
the security label of object o is implicitly defined to be x.
Each session has exactly two matching roles yr and ya,
and then y is regarded as the security label of user u. A
read permission is granted if yr > xr in RHr and an ap-
pend permission is granted if ya > xa in RHa. Note that
RHa is the dual of RHr, thereby the condition of granting
an append permission is ya 6 xa in original lattice struc-
ture. We think it is not necessary to use a second hierarchy.
More importantly, this approach can not cope with a com-
pound (write) permission that has both read and append ac-
cess rights to an object and does not consider discretionary
aspects of the BLP model.

Compared with previous attempts, we believe OP-
RBAC, with the addition of a few constraints, provides a
more direct implementation of BLP model. We do not re-
quire an additional hierarchy and are able to support the
assignment of “mixed” permissions (write permissions),
which include both read and append access to objects. Per-
haps the most significant contribution of the OP-RBAC
model is the support for some limited discretionary poli-
cies, something existing work does not consider and would
be ill-equipped to implement.

ERBAC96 [17] and GTRBAC [10] define multiple hi-
erarchies that make it possible to implement separation of
duties between two roles that have a common senior role.
However, OP-RBAC provides much simpler way to solve
the separation of duty requirement by assigning different
types of permissions to these two roles in a single role hi-
erarchy. In addition, it has been illustrated that usage and
activation hierarchies in ERBAC96 can be implemented in
a single role hierarchy in OP-RBAC. In other words, all the
advantages of ERBAC96 are inherited by OP-RBAC.

4 Conclusions and future work
We have considered three useful applications of the OP-

RBAC model, which arise because of its alternative treat-
ment of permission inheritance. We noted that our ap-
proach provides a more natural implementation of BLP
model using role-based techniques in a single role hier-
archy. Our approach provides the first such implementa-
tion that supports the assignment of compound permissions
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(both read and append access to objects) and demonstrates
how it is possible to incorporate limited support for the dis-
cretionary security property of BLP, something that no ex-
isting work is able to do.

A second application is to make it possible for a user
to be assigned to or activate a role when it is more senior
than two mutually exclusive roles. To our knowledge, no
other RBAC models are able to do this with a single role
hierarchy.

Finally, we have described a way of supporting both per-
mission usage and activation inheritance within a single hi-
erarchy. We have defined a transformation that generates a
OP-RBAC system that is equivalent to a given ERBAC96
system.

A first priority in future work is to develop a general
multilevel secure model based on OP-RBAC with the con-
sideration of inter-object information flow and complex
permissions. We also like to investigate whether XACML
is sufficient to define access control policies for the general
model and hope to start work on the implementation of the
model using Java. Other future work is to introduce OP-
TRBAC (Oriented Permission Temporal RBAC) that takes
into account of temporal aspects of OP-RBAC. Finally, we
intend to extend existing delegation models [2, 7, 20] for
RBAC to OP-RBAC. It has been suggested that a desir-
able feature in GTRBAC is to define “upward delegation”,
which allows a user to delegate a permission to roles more
senior than the role to which the permission is assigned [9].
The flexible approach to permission inheritance in OP-
RBAC, suggests that it would be straightforward to incor-
porate this feature in a delegation model for OP-RBAC.
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